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ABSTRACT: The extent to which glass-like kinetics
govern dynamics in protein folding has been heavily
debated. Here, we address the subject with an application
of space-time perturbation theory to the dynamics of
protein folding Markov state models. Borrowing techni-
ques from the s-ensemble method, we argue that distinct
active and inactive phases exist for protein folding
dynamics, and that kinetics for specific systems can fall
into either dynamical regime. We do not, however, observe
a true glass transition in any system studied. We go on to
discuss how these inactive and active phases might relate
to general protein folding properties.

As a grand challenge in statistical physics, the protein
folding problem has been untangled to the degree that

one can now claim some understanding of its components. The
Levinthal “paradox” serves not as a true paradox, but rather as a
reminder that proteins navigate a highly optimized free-energy
landscape to find a unique native state. A rich body of literature
exists concerning this conformational search over a rugged
energy surface and its consequences for protein biology.1,2

However, present challenges for the field of protein
biophysics are not diminished in stature from those in years
past. While the thermodynamics of the native state are well
understood, knowledge about the kinetics involved in getting to
this folded state is sparse. In recent years, systematically
generated master equation-based models called Markov state
models (MSMs) have been successful in relating ensemble
thermodynamics to a detailed description of kinetics.3−10 With
each new insight that MSMs provide, however, new questions
about the axioms of protein folding are raised. In particular,
while some protein dynamics are well defined by a canonical
two-state kinetics, MSMs demonstrate that many-state models
are essential for describing dynamics in numerous systems.10

Additionally, few simple rules have emerged that relate
properties like chain length and secondary structure to
relaxation time scales.3−8,10 Questions about connections
between thermodynamics and folding kinetics thus remain
open. What factors place a protein in one regime of kinetic
behavior over another?
Central to this discussion are ideas about “glassiness” in

protein dynamics. Early work in protein folding theory
proposed a mapping between proteins and spin glasses,
frustrated spin models that are largely applied to magnetic
systems.11,12 The extent to which spin glass kinetics serve as a

direct analogy to protein folding is debatable, but proteins do
demonstrate some elements of glassy behavior in their folding
dynamics. Notably, proteins and glasses share the characteristic
of having rugged energy landscapes with deep valleys and
potentially large barriers between states. Ideas of frustration in
low-energy states are prevalent in both classes of systems.
Often, the division between random peptide heteropolymers
and natural proteins is marked by a principle of least frustration.
Evolved proteins exhibit single, highly optimized native states in
which interactions are minimally frustrated; by contrast,
random heteropolymers display more glass-like characteristics,
folding into multiple, nearly degenerate ground states that may
lack structural correlation.11,12 Experimental attempts to
observe glass transitions in protein folding systems have
generated mixed results. Much evidence suggests that particular
single- and multi-domain proteins exhibit kinetic traps typical of
glass-like systems.13−15 In other single-domain systems,
however, no evidence for a glass transition is found even at
very low temperatures.16

Given the success of MSMs in describing folding kinetics, a
natural question arises from this discussion of glassiness in
protein folding: how glassy are the dynamics of MSMs? Here,
we study the kinetics of protein folding MSMs under the
framework of non-equilibrium perturbation theory. Statistical
mechanics in the space-time formalism has introduced the idea
of different non-equilibrium phases, within which dynamical
trajectories show distinct behavioral characteristics. In this
Communication, we attempt to identify these behavioral
regimes in protein folding trajectories gathered from MSMs.
In particular, we borrow ideas from the “s-ensemble”, a method
for driving dynamics out of equilibrium using a biasing
potential, s.17−20 In the text below, we discuss how one
might apply this non-equilibrium perturbation theory to MSMs,
and we go on to present the results of the s-ensemble approach
carried out on 16 protein folding systems.
In using statistical mechanics in a path-based formalism, we

define a trajectory, x(tobs), as a time series of system
configurations over some observation interval, tobs. For the
discrete-space, discrete-time Markov chains studied here, a
trajectory is represented by a simple sequence of the system’s
Markov states, where transitions between states are determined
by the model’s transition probability matrix and occur at a fixed
time interval, τlag.
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To study dynamics in the s-ensemble, we introduce the real-
valued biasing parameter, s, and the concept of a trajectory
activity, K. The activity is an extensive measure of the “change”
in a trajectory; in a spin system, for example, the activity might
be represented by a count of spin flips over a trajectory. Here,
the activity will be measured by the number of conformational
state-to-state transitions, i→j, such that i ≠ j, counted over a
trajectory of length tobs. The probability of a path x(tobs) with
activity K in a given s-ensemble is
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−
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where P′(x(tobs)) is the unbiased trajectory probability and Z(s,
tobs) is called the dynamical partition function.17−20 An obvious
analogy exists between s and the inverse temperature β; K thus
assumes the role that energy plays in canonical equilibrium
statistical mechanics. It is easily confirmed that unbiased
dynamics are recovered when s = 0.17−20 In practice, one can
extract all information about biased trajectories from the s-
ensemble transition matrix, written as

= +−sT U D( ) e s

where U and D are matrices containing the off-diagonal and
diagonal elements of the unbiased MSM transition matrix,
respectively. Using this matrix’s partition function, we can
calculate the mean activity per transition in the s-ensemble:
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A detailed description of how one calculates this partition
function and other quantities from T(s) is included in the
Supporting Information.19,20

To illustrate the effects of s-field perturbations on protein
folding MSMs, we will first look at native state stabilities in our
models as a function of the parameters s and tobs. Figure 1
shows the native state probability versus s and tobs for an MSM
of the Fip-35 WW domain.
Looking at Figure 1, one sees that the s-field has similar

qualitative effects on the native state over all values of tobs. At
negative s (where activity is enhanced), native state stability is
diminished, as transitions out of the folded state are favored. At
positive s (where activity is restricted), the population of the

folded state first increases, as unfolding transitions simply
become less likely. As s becomes arbitrarily large, however, the
stability of the native state disappears entirely. Here, we observe
an inevitability of the s-ensemble: at large positive s, the system
collapses into its most “metastable” state (i.e., the state with the
largest self-transition probability).19,20 In general, the curves in
Figure 1 reflect the behavior of the native state in all the MSMs
we studied. While native states are themselves quite metastable,
select low-probability states had larger self-transition proba-
bilities than the native state in all 16 models studied. This
observation hints at the existence of highly metastable states in
folding landscapes that are exceptionally difficult to access
kinetically. Whether these states have physical relevance or are
just artifacts of model construction, however, is a difficult
question to answer. We leave such investigations, which will
likely involve more extensive and targeted molecular dynamics
(MD) sampling, for future work. For the most part, we will
limit ourselves here to looking at unbiased dynamics (s = 0)
through the lens of the s-ensemble.
We should emphasize that, as is made clear in Figure 1, the

quantitative nature of the s-ensemble can change drastically as a
function of finite tobs. The value of tobs thus needs to be chosen
carefully as a parameter. Since this study focuses on protein
folding, we will from now on restrict ourselves to setting tobs =
τfold for all models, where τfold is defined by the longest
relaxation time scale in a given MSM.
Plots of the mean activity K as a function of s are useful for

studying the different regimes of dynamical behavior in the s-
ensemble. Figure 2 shows three such curves for MSMs of the
Fip-35 WW domain, Protein G, and the protein NTL9, all at
their respective tobs = τfold.

6,7,10 By construction, K(s) vs s curves
exhibit a crossover in the mean activity: the s-field drives the
system into distinct active and inactive regimes, separated by a
relatively fast decay in activity with s. The nature of these curves
at tobs = τfold varies from system to system. In many cases (as
with Protein G and the WW domain), the transition is simple
and smooth; in a few instances (like with NTL9), however, fine
structure in K(s) vs s emerges that marks density transfer
between specific Markov states.
In glass-forming systems, singularities in K(s) curves have

been shown to indicate phase transitions between an active
phase and an inactive “dynamical glass”.17 Our protein folding
models, of course, were not designed a priori as glass-formers,
and the transitions between the active and inactive dynamical
regimes of MSMs at tobs = τfold are much more gradual than
those in glass systems.17,20 Indeed, since protein molecules are
finite in size, they cannot support true dynamical phase
transitions.17 However, one does expect the crossovers between
active and inactive states to become increasingly sharp in
protein systems with long-lived metastable states and more
glassy dynamics.
We can easily discriminate between active (K ≈ 1) and

“glass-like” inactive (K ≈ 0) regimes within a reasonable
variation of the s-field for all MSMs studied. For the remainder
of this Communication, we will call these regimes the “active”
and “inactive” phases of the dynamics. To facilitate comparison
between models, we label the midpoint of the K(s) vs s curve
(K = 0.5) as s*, and we designate that point as the coexistence
point between the two phases. We emphasize that the active
and inactive regimes that we have found do not correspond
directly with the folded and unfolded states of the protein; see
Figure 1 and further discussion in the Supporting Information.

Figure 1. Native state probabilities as a function of s for various values
of tobs in the WW domain MSM (τfold = 28 τlag). For finite trajectories,
native probabilities are calculated at t = tobs/2.
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Are the dynamics in protein folding MSMs inherently active
or glass-like? As seen in Figure 2, the unbiased dynamics of
Protein G and NTL9 are in the inactive phase, while those of
Fip-35 are well into the active regime. The idea that this
dynamical behavior would vary so drastically between proteins
is intriguing, since such heterogeneity suggests that different
processes are at work in driving each protein’s folding kinetics.
Figure 3 shows the value of s at coexistence between the

active and inactive phases as a function of chain length and
folding time for all 16 proteins analyzed. Proteins with positive
values of s* are in the active regime under unbiased dynamics,
while proteins with negative s* are in the inactive regime. As
noted in the Supporting Information, the MD data for these 16
systems were collected under various force fields and at

different temperatures; 15 models (villin being the only
exception) were constructed from explicit solvent data sets.3−10

We indeed see a wide variation in dynamical behavior among
the proteins studied. In general, the smallest, fastest-folding
proteins have the most active dynamics, while the largest,
slowest-folding systems are the most inactive. Proteins with
intermediate folding time scales (∼10 μs) generally displayed
dynamics near to their respective s* values. We do not see a
strong correlation between chain length and dynamical activity.
The helix bundle α3D, for instance, is 73 residues in length, but
resides firmly in the active phase. By contrast, all models with
folding times greater than 10 μs were shown to exist in the
inactive phase. Accordingly, a proposed boundary for

Figure 2. Mean activity per time step, K(s), versus s curves for protein folding MSMs of the Fip35 WW domain (left, τfold = 28τlag), Protein G
(middle, τfold = 1110τlag), and NTL9 (right, τfold = 3332τlag). Similar curves were computed for 13 additional systems; the results of this analysis are
shown in Figure 3.

Figure 3. Plot of the s-ensemble parameter at coexistence, s*, as a function of folding time (in μs) and chain length (in number of residues) for 16
protein folding MSMs. Values of s* for Fs-peptide (1.20) and Chignolin (1.95) were omitted to preserve scale. The magnitude of an s-value suggests
how far a model’s unbiased dynamics deviate from coexistence between active and glassy phases.
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dynamically active and inactive proteins is drawn as a horizontal
line at 10 μs in Figure 3.
These observations would suggest that dynamical activity is

largely independent of thermodynamic considerations, at least
with respect to the extensive free energies of folding. We also
note that the activity K measures relatively fast motion of the
protein (on the time scale τlag), while the folding time τfold is a
measure of much slower cooperative motion. Figure 3 indicates
a strong correlation between molecular motion on these two
widely separated time scales, across a range of systems whose
molecular size and structure are very different. One might also
posit that the proposed boundary in Figure 3 arises because
folding kinetics on time scales longer than 10 μs are somehow
more complex and lead to a different dynamical regime. Just
what factors contribute to the emergence of these two kinetic
regimes, however, are up for debate. Interestingly, all proteins
in the inactive phase (with the exception of villin, discussed
below) either contain native β-sheet structures or have shown a
propensity for forming β-rich misfolded states. It is possible
that the emergence of β-sheet dynamics in protein folding is in
part responsible for a restriction in dynamical activity. We
should note that some proteins in the active regime (i.e., WW
domain and BBA) also have native β-sheet structure, suggesting
other factors are likely at play in determining the kinetic
partitioning. From a molecular simulation point of view, the
results concerning the dynamics of the villin headpiece domain
are noteworthy. While the villin MSM constructed from explicit
solvent MD data was in the active phase, the MSM constructed
from implicit solvent data crosses the threshold to the inactive
phase. This result suggests that dynamics in GBSA implicit
solvent simulations are inherently more glass-like than
dynamics in explicit solvent.
In summary, we have shown that s-field perturbations of

protein folding MSMs bring to light two distinct regimes of
kinetic behavior. We have characterized the unbiased dynamics
of 16 protein systems through the lens of s-ensembles, and we
have discussed how these active or inactive dynamics might
relate to the properties of specific proteins.
Given that we observe a crossover from active to inactive

behavior but no true phase transition to an inactive glass phase,
our results agree with past consensus about the role of glassy
dynamics in protein folding, i.e., that glass systems have marked
similarities with, but are not directly applicable to, protein
folding systems. With respect to the active and inactive phases
discussed in this paper, the proteins nearest to the proposed
phase boundary in Figure 3 might warrant further study. In
particular, one might see if temperature changes, specific
mutations, or other perturbations would drive systems over the
active−inactive threshold. As stated previously, the nature of
the low-probability states onto which the MSM s-ensembles
collapse is also potentially interesting. As s-ensemble methods
are natural for studying perturbed MSM dynamics, a number of
other intriguing extensions of this work could be imagined.
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